Interpretation of AIRS Data in Thin Cirrus Atmospheres Based on a Fast Radiative Transfer Model
نویسندگان
چکیده
A thin cirrus cloud thermal infrared radiative transfer model has been developed for application to cloudy satellite data assimilation. This radiation model was constructed by combining the Optical Path Transmittance (OPTRAN) model, developed for the speedy calculation of transmittances in clear atmospheres, and a thin cirrus cloud parameterization using a number of observed ice crystal size and shape distributions. Numerical simulations show that cirrus cloudy radiances in the 800–1130-cm 1 thermal infrared window are sufficiently sensitive to variations in cirrus optical depth and ice crystal size as well as in ice crystal shape if appropriate habit distribution models are selected a priori for analysis. The parameterization model has been applied to the Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite to interpret clear and thin cirrus spectra observed in the thermal infrared window. Five clear and 29 thin cirrus cases at nighttime over and near the Atmospheric Radiation Measurement program (ARM) tropical western Pacific (TWP) Manus Island and Nauru Island sites have been chosen for this study. A -minimization program was employed to infer the cirrus optical depth and ice crystal size and shape from the observed AIRS spectra. Independent validation shows that the AIRS-inferred cloud parameters are consistent with those determined from collocated ground-based millimeter-wave cloud radar measurements. The coupled thin cirrus radiative transfer parameterization and OPTRAN, if combined with a reliable thin cirrus detection scheme, can be effectively used to enhance the AIRS data volume for data assimilation in numerical weather prediction models.
منابع مشابه
Cirrus cloud optical and microphysical properties determined from AIRS infrared spectra
[1] We developed an efficient thermal infrared radiative transfer model on the basis of the delta-four-stream approximation to facilitate high-spectral-resolution remote sensing applications under cirrus cloudy conditions in the Atmospheric Infrared Sounder (AIRS) data. Numerical experiments demonstrated that sensitivity in the 800-1130 cm 1 thermal infrared window spectral region is sufficient...
متن کاملEvaluation of Cirrus Cloud Properties Derived From MODIS Data Using Cloud Properties Derived From Ground-Based Observations Collected at the ARM SGP Site
The Moderate Resolution Imaging Spectroradiometer (MODIS) on board the NASA Terra satellite has been collecting global data since March 2000 and the one on the Aqua satellite since June 2002. In this paper, cirrus cloud properties derived from ground-based remote sensing data are compared with similar cloud properties derived from MODIS data on Terra. To improve the space–time correlation betwe...
متن کاملValidation of the community radiative transfer model
To validate the Community Radiative Transfer Model (CRTM) developed by the U.S. Joint Center for Satellite Data Assimilation (JCSDA), the discrete ordinate radiative transfer (DISORT) model and the line-by-line radiative transfer model (LBLRTM) are combined in order to provide a reference benchmark. Compared with the benchmark, the CRTM appears quite accurate for both clear sky and ice cloud ra...
متن کاملDevelopment and validation of Gastropod, a fast radiative transfer model for the advanced sounders
Gastropod is a fast radiative transfer code designed to meet the requirements of a day one radiative transfer operator for AIRS (and eventually IASI) for use in variational data assimilation systems. This paper gives an overview of the model methodology adopted, and summarises the results from line-by-line radiative transfer model validation of the Gastropod forward model and Jacobian code for ...
متن کاملTropical thin cirrus and relative humidity observed by the Atmospheric Infrared Sounder
Global observations of cloud and humidity distributions in the upper troposphere within all geophysical conditions are critically important in order to monitor the present climate and to provide necessary data for validation of climate models to project future climate change. Towards this end, tropical oceanic distributions of thin cirrus optical depth (τ ), effective diameter (De), and relativ...
متن کامل